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Abstract
As high-end computing systems continue to grow in scale, recent advances in multi-

and many-core architectures have pushed such growth toward more denser architec-
tures, that is, more processing elements per physical node, rather than more physical
nodes themselves. Although a large number of scientific applications have relied so far
on an MPI-everywhere model for programming high-end parallel systems, this model
may not be sufficient for future machines, given their physical constraints such as de-
creasing amounts of memory per processing element and shared caches. As a result,
application and computer scientists are exploring alternative programming models that
involve using MPI between address spaces and some other threaded model, such as
OpenMP, Pthreads, or Intel TBB, within an address space. Such hybrid models require
efficient support from an MPI implementation for MPI messages sent from multiple
threads simultaneously. In this paper, we explore the issues involved in designing such
an implementation. We present four approaches to building a fully thread-safe MPI
implementation, with decreasing levels of critical-section granularity (from coarse-grain
locks to fine-grain locks to lock-free operations) and correspondingly increasing lev-
els of complexity. We present performance results that demonstrate the performance
implications of the different approaches.

1 Introduction

High-end computing (HEC) systems have continued to grow in scale over the past few
years. However, recent advances in multi- and many-core architectures have pushed such
growth toward more denser architectures (more processing elements per physical node),
rather than more physical nodes themselves. For example, more than 80% of the systems in
the November 2008 ranking of the Top500 supercomputers belong to the multi/many-core
processor family [20]. Even in the low-end server market, quad-core and hex-core processors
are already available and are considered commodity processors today. With Intel’s plans
to support the 16-core Larrabee [16] processor by next year and SUN’s plans to allow as
many as 2048 threads within a single physical node in the near future [21], systems can be
expected to continue to get denser.
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The vast majority of parallel scientific applications running on HEC systems today rely
on an MPI-everywhere model, where an MPI process is launched on each processing ele-
ment. Each process explicitly communicates with other processes without sharing any part
of the address space, regardless of whether it is on the same physical node. However, given
the physical constraints of current and future generation parallel machines (including de-
creasing amounts of per-processing-element memory, shared caches, and per-process TLB
space), many application and computer scientists are reconsidering this design and explor-
ing alternative programming models that can be used with incremental additions to their
existing programs. These models include using MPI between address spaces and relying
on some threaded model, OpenMP [3], Pthreads [9], Intel Threading Building Blocks [15],
within an address space. For example, the Sequoia benchmark suite [17] that was used re-
cently for procurement of a 20 petaflops system at Lawrence Livermore National Laboratory
contains many codes that use a hybrid MPI and threaded model.

The MPI-2 [11] standard already specifies a clear definition of interaction between MPI
and all such models that internally rely on threads sharing the same address space. However,
many MPI implementations either provide no support for such hybrid programming or
rely on coarse-grained global locking to avoid multiple threads corrupting their internal
stacks. This limitation is primarily because of the complexity associated with designing
and implementing fine-grained locking support for threads [7]. However, as the number of
processing elements within the same node continues to grow, the need for efficient threaded-
MPI hybrid programming is becoming increasingly more important.

Thus, in this paper, we study the issues associated with fine-grained threading support
in MPI. We propose four different approaches to building a fully thread-safe MPI implemen-
tation, with decreasing levels of critical-section granularity and correspondingly increasing
levels of complexity. We also describe details of the implementation of our proposed schemes
in MPICH2 [12], a popular implementation of the MPI-2 standard, as well as various experi-
ments evaluating its performance in different scenarios. Our experimental results show that
our proposed schemes can improve the performance of hybrid threaded-MPI programming
significantly.

The rest of this paper is organized as follows. In Section 2 we discuss related work
in the area of multithreading in MPI implementations. In Section 3 we briefly describe
the thread-safety specification in MPI. In Section 4 we describe the four approaches to
selecting granularity of critical sections. In Section 5 we present our experimental results.
In Section 6 we present our conclusions and discuss future work.

2 Related Work

The issue of efficiently supporting multithreaded MPI communication has received only lim-
ited attention in the literature. In [7], we described and analyzed what the MPI Standard
says about thread safety and what it implies for an implementation. We also presented
an efficient multithreaded algorithm for generating new context ids, which is required for
creating new communicators. Protopopov and Skjellum discuss a number of issues related
to threads and MPI, including a design for a thread-safe version of MPICH-1 [14, 18]. Pla-
chetka describes a mechanism for making a thread-unsafe PVM or MPI implementation
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quasi-thread-safe by adding an interrupt mechanism and two functions to the implementa-
tion [13]. Garćıa et al. present MiMPI, a thread-safe implementation of MPI [6]. TOMPI [4]
and TMPI [19] are thread-based MPI implementations, where each MPI rank is actually
a thread. (Our paper focuses on conventional MPI implementations where each MPI rank
is a process that itself may have multiple threads, all having the same rank.) USFMPI is
a multithreaded implementation of MPI that internally uses a separate thread for commu-
nication [2]. A good discussion of the difficulty of programming with threads in general is
given in [10].

3 Thread Safety in MPI

For performance reasons, MPI defines four “levels” of thread safety [11] and allows the user
to indicate the level desired—the idea being that the implementation need not incur the
cost for a higher level of thread safety than the user needs. The four levels of thread safety
are as follows:

1. MPI THREAD SINGLE Each process has a single thread of execution.

2. MPI THREAD FUNNELED A process may be multithreaded, but only the thread that
initialized MPI may make MPI calls.

3. MPI THREAD SERIALIZED A process may be multithreaded, but only one thread at a
time may make MPI calls.

4. MPI THREAD MULTIPLE A process may be multithreaded, and multiple threads may
simultaneously call MPI functions (with a few restrictions mentioned below).

MPI provides a function, MPI Init thread, by which the user can indicate the level of
thread support desired, and the implementation will return the level supported. A portable
program that does not call MPI Init thread should assume that only MPI THREAD SINGLE
is supported. This paper focuses on the MPI THREAD MULTIPLE (fully multithreaded) case.

For MPI THREAD MULTIPLE, the MPI Standard specifies that when multiple threads make
MPI calls concurrently, the outcome will be as if the calls executed sequentially in some
(any) order. Also, blocking MPI calls will block only the calling thread and will not prevent
other threads from running or executing MPI functions. (The example in Figure 1 must
not deadlock for any ordering of thread execution.) MPI also says that it is the user’s
responsibility to prevent races when threads in the same application post conflicting MPI
calls. For example, the user cannot call MPI Info set and MPI Info free on the same info
object concurrently from two threads of the same process; the user must ensure that the
MPI Info free is called only after MPI Info set returns on the other thread. Similarly,
the user must ensure that collective operations on the same communicator, window, or file
handle are correctly ordered among threads.

4 Choices of Critical-Section Granularity

To support multithreaded MPI communication, the implementation must protect certain
data structures and portions of code from being accessed by multiple threads simultaneously
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Thread 0 Thread 1

MPI_Recv(src=0) MPI_Send(dest=0)MPI_Recv(src=1) MPI_Send(dest=1)

Thread 0 Thread 1

Process 0 Process 1

Figure 1: An implementation must ensure that this example never deadlocks for any order-
ing of thread execution.

in order to avoid race conditions. A portion of code so protected is called a critical section [5].
The granularity (size) of the critical section and the exact mechanism used to implement
the critical section can have a significant impact on performance. In general, having smaller
critical sections allows more concurrency among threads but incurs the cost of frequently
acquiring and releasing the critical section. A critical section can be implemented either
by using mutex locks or in a lock-free manner by using assembly-level atomic operations,
such as compare-and-swap or fetch-and-add [8]. Mutex locks are comparatively expensive,
whereas atomic operations are non-portable and can make the code more complex.

We describe four approaches to the selection of critical-section granularity in a thread-
safe MPI implementation.

Global There is a single, global1 critical section that is held for the duration of most MPI
functions, except if the function is going to block on a network operation. In that case,
the critical section is released before blocking and then reacquired after the network
operation returns. A few MPI functions have no thread-safety implications and hence
have no critical section (e.g., MPI Wtime) [1, 7]. This is the simplest approach and is
used in the past few releases of MPICH2.

Brief Global There is a single, global critical section, but it is held only when required.
This approach permits concurrency between threads making MPI calls, except when
common internal data structures are being accessed. However, it is more difficult to
implement than Global, because determining where a critical section is needed, and
where not, requires care.

Per Object There are separate critical sections for different objects and classes of objects.
For example, there may be a separate critical section for communication to a partic-
ular process. This approach permits even more concurrency between threads making
MPI calls, particularly if the underlying communication system supports concurrent
communication to different processes. Correspondingly, it requires even more care in
implementing.

Lock Free Instead of critical sections, lock-free (or wait-free) synchronization methods [8]
are implemented by using atomic operations that exploit processor-specific features.
This approach offers the potential for improved performance and greater concurrency.
Complexity-wise, it is the hardest of the four.

1Global here means global to all threads of a process.
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In this paper we implement and evaluate the first three approaches to selecting critical-
section granularity. The lock-free approach is part of our future work as discussed in Sec-
tion 6.

To manage building and experimenting with these four options in MPICH2, we have
developed a set of abstractions built around named critical sections and related concepts.
These are implemented as compile-time macros, ensuring that there is no extra overhead.
Each section of code that requires atomic access to shared data structures is enclosed in
a begin/end of a named critical section. In addition, the particular object (if relevant) is
passed to the critical section. For example,

MPIU_THREAD_CS_BEGIN(COMM,vc)
... code to access a virtual communication channel vc
MPIU_THREAD_CS_END(COMM,vc)

In the Global mode, there is an “ALLFUNC” (all functions) critical section, and the other
macros, such as the COMM one above, are defined to be empty so that there is no extra
overhead. In the Brief-Global mode, the ALLFUNC critical section is defined to be empty,
and others, such as the above COMM critical section, are defined to acquire and release a
common, global mutex. The vc argument to the macro is ignored in that case. In the
Per-Object mode, the situation is similar to that in Brief Global, except that instead of
using a common, global mutex, the critical-section macro uses a mutex that is part of the
object passed as the second argument of the macro.

5 Performance Evaluation

To assess the performance of each granularity option, we wrote a test that measures the
message rate achieved by n threads of a process sending to n single-threaded receiving
processes, as shown in Figure 2(a). The receiving processes prepost 128 receives using
MPI Irecv, send an acknowledgment to the sending threads, and then wait for the receives
to complete. After receiving the acknowledgment, the threads of the sending process send
128 messages using MPI Send. This process is repeated for 100,000 iterations. The acknowl-
edgment message in each iteration ensures that the receives are posted before the sends ar-
rive, so that there are no unexpected messages. The sending process calls MPI Init thread

Process

Thread

(a) Threads (b) Processes

Figure 2: Illustration of test programs. Multiple threads or processes send messages to a
different single-threaded receiving process.
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with the thread level set to MPI THREAD MULTIPLE (even for runs with only one thread, in
order to show the overhead of providing thread safety). The message rate is calculated as
n/avg latency, where n is the number of sending threads or processes, and avg latency is
avg looptime/(niters∗128), where avg looptime is the execution time of the entire iteration
loop averaged over the sending threads.

To provide a baseline message rate, we also measured the message rate achieved with
separate processes (instead of threads) for sending. For this purpose, we used a modi-
fied version of the test that uses multiple single-threaded sending processes, as shown in
Figure 2(b). The sending processes simply call MPI Init, which sets the thread level to
MPI THREAD SINGLE.

We performed three sets of experiments to measure the impact of critical-section granu-
larity. The first set does not perform any actual communication (all sends are to
MPI PROC NULL), the second performs blocking communication, and the third performs non-
blocking communication.

The tests were run on a single Linux machine with two 2.6 GHz, quad-core Intel Clover-
town chips, (a total of 8 cores), with our development version of MPICH2 in which the
ch3:sock (TCP) channel was modified to incorporate the thread-safety approaches de-
scribed in this paper.

5.1 Performance with MPI PROC NULL

This test is intended to measure the threading overhead in the MPICH2 code in the absence
of any network communication. For this purpose, we use MPI PROC NULL as the destination
in MPI Send and as a source in MPI Irecv. In MPICH2, an MPI Send to MPI PROC NULL is
handled at a layer above the device-specific code and does not involve manipulation of any
shared data structures.

Figure 3 shows the aggregate message rate of the sending threads or processes as a
function of the number of threads or processes. In the multiple-process case, the message
rate increases with the number of senders because there is no contention for critical sections.
In the multithreaded case with Brief Global, the performance is almost identical to multiple
processes because Brief Global acquires critical sections only as needed, and in this case no
critical section is needed as there is no communication. With the Global mode, however,
there is a considerable decline in message rate because, in this mode, a critical section is
acquired on entry to an MPI function, which serializes the accesses by different threads.

Figure 4 shows the time the multithreaded process spent waiting for a mutex, averaged
over the number of threads. This figure clearly shows that there is no mutex contention for
Brief-Global granularity, while for Global granularity the time a thread spends waiting for
a mutex increases with the number of threads.

The number of times a mutex is acquired was counted for each send and is shown in
Table 1. The first data column shows the number of times a mutex is locked when sending
to MPI PROC NULL. We see that for Global granularity the global mutex is only acquired
once, while in Brief Global it is not acquired at all.
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Figure 3: Message rate (in million messages per sec.) for a multithreaded process sending to
MPI PROC NULL with Global and Brief Global granularities, compared to that with multiple
processes.

 0

 0.5

 1

 1.5

 2

 2.5

 3

 1  2  3  4

M
ut

ex
 ti

m
e 

(µ
se

c)

Thread count

Global
Brief Global

Figure 4: Per-thread mutex wait time for a multithreaded process sending to MPI PROC NULL
with Global and Brief Global granularities, compared to that with multiple processes.
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Table 1: Number of times a mutex is acquired per send operation for sending to
MPI PROC NULL (Sec. 5.1), for blocking sends (Sec. 5.2), and for nonblocking sends (Sec. 5.3).

Communication Type
Granularity MPI PROC NULL Blocking Nonblocking

Global 1 1 1
Brief Global 0 1 8
Per-Object 0 1 8

Per-Obj+TLS 0 1 6
Per-Obj+TLS+Atomic 0 1 2

5.2 Performance with Blocking Sends

This test measures the performance when the communication path is exercised, which re-
quires critical sections to be acquired. The test measures the message rate for zero-byte
blocking sends. (Even for zero-byte sends, the implementation must send the message
envelope to the destination because the receives could have been posted for a larger size.)

Figure 5 shows the results. Notice that because of the cost of communication, the over-
all message rate is considerably lower than with MPI PROC NULL. In this test, even Brief
Global performs as poorly as Global because it acquires a large critical section during com-
munication, which dominates the overall time. We then tried the Per-Object granularity,
which demonstrated very good performance (comparable to multiple processes) because the
granularity of critical sections in this case is per virtual channel (VC), rather than global.
In MPICH2, a VC is a data structure that holds all the state and information required
for a process to communicate with another process. Since each thread sends to a different
process, they use separate VCs, and there is no contention for the critical section.

Figure 6 shows the mutex wait time for this test. As before, we see that with Global
granularity, the mutex wait time increases with the number of threads, indicating that
increasing the number of threads increases contention on the single mutex. We see a similar
increase in mutex wait time with Brief-Global granularity as well because of the use of a
single global mutex in both Global and Brief-Global cases. In the Per-Object case, very
little time is spent waiting for mutexes because the threads are not contending for the same
VC structures. The mutex wait time does increase very slightly in the Per-Object case, but
it is most likely an artifact of the mechanism we used to time the mutex. From Table 1 we
see that, in the blocking case, Global, Brief Global, and Per Object acquire the mutex the
same number of times per send operation (once). In the Per-Object case, however, each
thread locks a different mutex, resulting in a higher message rate (Figure 5) as there is no
contention (Figure 6).

5.3 Performance with Nonblocking Sends

When performing a blocking send for short messages, MPICH2 does not need to allocate
an MPI Request object. For nonblocking sends, however, MPICH2 must allocate a request
object to keep track of the progress of the communication operation. Requests are allocated
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Figure 5: Message rates with blocking sends for Global, Brief Global, and Per-Object gran-
ularities.
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Figure 6: Per-thread mutex wait time with blocking sends for Global, Brief Global, and
Per-Object granularities.
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Figure 7: Message rates with nonblocking sends. Per-Object tlp is the thread-local request-
pool optimization and Per-Object tlp atom updates reference counts using atomic assembly
instructions.

from a common pool of free requests, which must be protected by a critical section. When a
request is completed, it is freed and returned to the common pool. As a result, the common
request pool becomes a source of critical-section contention.

Each request object also uses a reference count to determine when the operation is
complete and when it is safe to free the object. Since any thread can cause progress on
communication, any thread can increment or decrement the reference count. A critical
section is therefore needed, which can become another source of contention. All this makes
it more difficult to minimize threading overhead in nonblocking sends than blocking sends.

We modified the test program to use nonblocking sends and measured the message
rates. Figure 7 shows the results. Notice that the performance of Per-Object granularity is
considerably affected by the contention on the request pool, and the message rate does not
increase beyond more than two threads.

To reduce the contention on the common request pool, we experimented with providing a
local free pool for each thread. These thread-local pools are initially empty. When a thread
needs to allocate a request and its local pool is empty, it will get it from the common pool.
But when a request is freed, it is returned to the thread’s local pool. The next time the
thread needs a request, it will allocate it from its local pool and avoid acquiring the critical
section for the common request pool. The graph labeled “Per-Object tlp” in Figure 7 shows
that by adding the thread-local request pool, the message rate improves, but only slightly.
The contention for the reference-count updates still has a negative impact on the message
rate.

To alleviate the reference-count contention, we modified MPICH2 to use atomic assembly
instructions for updating reference counts (instead of using a mutex). The graph labeled
“Per-Object tlp atom” in Figure 7 shows that the message rate improves even further
with this optimization, and increases with the number of threads. It is still less than

10



 0

 5

 10

 15

 20

 25

 30

 35

 40

 1  2  3  4

M
ut

ex
 ti

m
e 

(µ
se

c)

Thread count

Global
Brief Global
Per-Object

Per-Object tlp
Per-Object tlp atom

Figure 8: Per-thread mutex wait times with nonblocking sends. Per-Object tlp is the thread-
local request-pool optimization and Per-Object tlp atom updates reference counts using
atomic assembly instructions.

in the multiple-process case, but some performance degradation is to be expected with
multithreading because critical sections cannot be completely avoided.

Figure 8 shows the mutex wait times for each of the granularities. Again, we see the
mutex wait time of Global granularity increasing with thread count. Interestingly, we also
see the mutex wait time of Brief Global increase faster than Global. This higher wait time
is because of the smaller critical section in Brief Global, which required the mutex to be
acquired eight times to send each message as shown in Table 1. Specifically, the mutex is
acquired when a request object is allocated or a reference count is updated, following which
the mutex is immediately released. The mutex must then be reacquired when entering the
progress engine to actually send the message. As mentioned previously, while requests do
not need to be allocated when performing blocking sends, they do need to be allocated for
nonblocking sends. Therefore, we did not see this overhead in the previous tests. Even
though the overall size of the critical section is decreased compared to Global granularity,
the thread must contend for the mutex multiple times for each send, increasing the overall
mutex wait time.

With Per-Object granularity, a mutex is allocated the same number of times for each
nonblocking send as in Brief Global (Table 1), but the mutex wait time is much lower than
Global and Brief Global (Figure 8). The lower wait time is because Per Object uses separate
mutexes to lock different data structures, many of which are accessed by only one thread,
and hence there is no contention. Using the thread-local request-pool optimization with
Per Object reduces both the number of times a mutex needs to be locked as well as the
overall mutex wait time. Combining this optimization with reference-count updates using
atomic assembly instructions further decreases the mutex count and mutex wait time.
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6 Conclusions and Future Work

We have studied the problem of improving the multithreaded performance of MPI imple-
mentations and presented several approaches to reducing the critical-section granularity,
which can impact performance significantly. Such optimizations, however, require careful
implementation.

While it is clear that atomic use and update of the communication engine is essential,
it is equally important to ensure that all shared data structures, including MPI datatypes,
requests, and communicators, are updated in a thread-safe way. For example, the reference-
count updates used in most (if not all) MPI implementations must be thread atomic. This
is not just a theoretical requirement: In some early experiments, we did not atomically
update the reference counts, assuming that the very small race condition would not affect
the results; but, by doing so, we regularly encountered failures in our communication-
intensive tests. This experience suggests that the quasi-thread-safe approach proposed by
Plachetka [13], in which only the access to the communication engine is serialized, is not
sufficient.

We plan to implement Lock-Free granularity in MPICH2 in the future. As part of this
work, we are implementing a portable library of atomic operations (such as compare-and-
swap, test-and-set, and fetch-and-add). The atomic operations are implemented separately
for different architectures by using assembly-language instructions. By using these atomic
operations, we can replace many of the critical sections with lock-free code in a portable
manner.

The abstractions we have employed to control critical-section granularity are similar to
what is required for transactional memory. We plan to use these abstractions to explore
the use of transactional memory.
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